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Laser Diagnostic Imaging of Energetically Enhanced
Flames Using Direct Microwave Plasma Coupling

Xing Rao, Stephen Hammack, Campbell Carter, and Tonghun Lee

Abstract—Quantitative images of temperature and hydroxyl
(OH) concentrations are presented in plasma-enhanced flames,
where a nonthermal microwave plasma discharge is coupled di-
rectly with the reaction zone of the flame. The plasma jet is
generated through a novel microwave (2.45 GHz) waveguide based
a coaxial reactor system. Planar laser-induced fluorescence is
used to generate the OH fields, and planar Rayleigh scattering
thermometry is used for the temperature. Plasma-enhanced flames
present new possibilities for ignition and flame holding under
harsh operating conditions, including stabilization of combustion
in hypersonic flame conditions.

Index Terms—Laser-induced fluorescence, nonequilibrium
microwave plasma, plasma-enhanced combustion, Rayleigh
scattering.

ONEQUILIBRIUM plasmas are of great interest for en-
hancing chemical energy conversion which can lead to
positive effects, such as pollution reduction, fuel reforming,
ignition, and flame stabilization under harsh conditions [1]. Of
the many types of plasma-generating systems, microwave is
particularly enticing due to its high efficiency, ability to operate
under high pressures, longer lifetime due to the absence of high-
temperature electrodes, etc. We have previously shown that
highly efficient plasma enhancement can be achieved when the
electric field is directly coupled into the flame reaction zone [2]
by using a re-entrant cavity system [3]. This study is an ex-
tension of this concept to more realistic flame geometries using
both premixed and non-premixed conditions. The goal is to show
spatially resolved images of how the flame and plasma energy
interact for various plasma-enhanced flame configurations.
The plasma reactor (Amarante Technologies) demonstrated
uses a new and proprietary energy delivery system for the
generation of the plasma. It is designed to process chemical
energy conversion on the order of kilowatts, whereas our
previous plasma discharge system was limited to about 30 W.
To generate the needed e-field for the plasma discharge to
initiate, a waveguide is used to propagate the microwaves from
a magnetron power supply to a plasma applicator, where a
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Fig. 1. (Top) Single-shot OH PLIF images, (middle) averaged Rayleigh
scattering temperature fields, and (bottom) photographs at a total flow rate of
15 LPM of equivalence ratio of 1.0 for power levels from 60 to 130 W in the
premixed mode.

coaxial electrode in the center of the torch acts as an antenna
to transmit the microwaves to the tip of the nozzle. The power
supply used here is at 2.45 GHz with 2-kW capacity; however,
in all experiments, less than 100 W is needed in order to initiate
the plasma discharge in the flame. Microwave power is focused
on the tip of the torch, where the flame and reaction zone are
located, through adjustments of a three-stub tuner and sliding
short. The absorbed microwave power can be determined
from the difference of incident and reflected powers. As
soon as a microwave power of more than 30 W is applied, a
nonequilibrium discharge is established and is coupled into the
flame. The system is flexible and can accommodate various
flame geometries, both premixed and non-premixed, depending
on the nozzle geometry and fuel and air flow.

The images shown were obtained using laser diagnostics
around the reactor. For hydroxyl (OH) planar laser-induced
fluorescence (PLIF), UV laser radiation at 283 nm was used
to excite the Q1 (8) transition in the A?X+ — X2II (1, 0) band.
A 532-nm emission from a frequency doubled Nd:YAG laser

0093-3813/$26.00 © 2011 IEEE
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(Top) Single-shot OH PLIF images, (middle) averaged Rayleigh scattering temperature fields, and (bottom) photographs at total flow rate of 1 LPM of

methane and 5 LPM of air for power levels from 60 to 130 W in the non-premixed mode.

was used for the Rayleigh scattering temperature measurement,
in which scattering light signal is related to the density of the
gas and, thus, the temperature.

Figs. 1 and 2 show the OH concentrations and temperature
fields for both premixed and non-premixed cases, respectively,
where the plasma power is varied from 60 to 130 W. All condi-
tions shown here are cases where the flow speed is too fast for
stabilization of the flame to occur without a plasma discharge.
As can be seen in the third row, a purple and white discharge
from the plasma can be seen to anchor the flame to the tip of
the torch, followed by the blue emission from the oxidation of
methane. As the plasma power is increased, the temperature
of the discharge varies over a wide range from under 1000 K
to well over 2000 K. The mechanism of the flame enhancement
is also expected to drastically vary over this range, as can be
seen from the OH concentrations, which increase more than
300% over this wavelength range. For the non-premixed case,
a central air discharge results in the plasma discharge and fuel
injected around the edge. Two distinct reaction zones from the

interaction with the plasma and diffusion with the surrounding
air can be observed.

In conclusion, photographs of a directly coupled plasma-
enhanced flame at atmospheric pressures, single-shot OH PLIF
images, and averaged planar Rayleigh scattering thermometry
images of methane/air flame have been presented for two dif-
ferent flame geometries. The concept of enhancing the chemical
energy conversion of flames by coupling the plasma energy into
the reaction zone could potentially present new opportunities
for advanced combustion and propulsion systems in the future.
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